SDF1-A Facilitates Lin−/Sca1+ Cell Homing following Murine Experimental Cerebral Ischemia

نویسندگان

  • J. Mocco
  • Aqeela Afzal
  • Saeed Ansari
  • Annemarie Wolfe
  • Kenneth Caldwell
  • E S. Connolly
  • Edward W. Scott
چکیده

BACKGROUND Hematopoietic stem cells mobilize to the peripheral circulation in response to stroke. However, the mechanism by which the brain initiates this mobilization is uncharacterized. METHODS Animals underwent a murine intraluminal filament model of focal cerebral ischemia and the SDF1-A pathway was evaluated in a blinded manner via serum and brain SDF1-A level assessment, Lin-/Sca1+ cell mobilization quantification, and exogenous cell migration confirmation; all with or without SDF1-A blockade. RESULTS Bone marrow demonstrated a significant increase in Lin-/Sca1+ cell counts at 24 hrs (272 ± 60%; P<0.05 vs sham). Mobilization of Lin-/Sca1+ cells to blood was significantly elevated at 24 hrs (607 ± 159%; P<0.05). Serum SDF1-A levels were significant at 24 hrs (Sham (103 ± 14), 4 hrs (94 ± 20%, p = NS) and 24 hrs (130 ± 17; p<0.05)). Brain SDF1-A levels were significantly elevated at both 4 hrs and 24 hrs (113 ± 7 pg/ml and 112 ± 10 pg/ml, respectively; p<0.05 versus sham 76 ± 11 pg/ml). Following administration of an SDF1-A antibody, Lin-/Sca1+ cells failed to mobilize to peripheral blood following stroke, despite continued up regulation in bone marrow (stroke bone marrow cell count: 536 ± 65, blood cell count: 127 ± 24; p<0.05 versus placebo). Exogenously administered Lin-/Sca1+ cells resulted in a significant reduction in infarct volume: 42 ± 5% (stroke alone), versus 21 ± 15% (Stroke+Lin-/Sca1+ cells), and administration of an SDF1-A antibody concomitant to exogenous administration of the Lin-/Sca1+ cells prevented this reduction. Following stroke, exogenously administered Lin-/Sca1+ FISH positive cells were significantly reduced when administered concomitant to an SDF1-A antibody as compared to without SDF1-A antibody (10 ± 4 vs 0.7 ± 1, p<0.05). CONCLUSIONS SDF1-A appears to play a critical role in modulating Lin-/Sca1+ cell migration to ischemic brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidylinositol-3-Kinase- Is Integral to Homing Functions of Progenitor Cells

Endothelial progenitor cells (EPCs) and hematopoietic progenitor cells are recruited to ischemic regions, improving neovascularization. 1 and 2 integrins play a crucial role for progenitor cell homing to ischemic tissues. Integrin activity is regulated by chemokines and their respective G protein–coupled receptors. The phosphatidylinositol3-kinase catalytic subunit (PI3K ) is the PI3K isoform t...

متن کامل

Effects of Usnic Acid on Apoptosis and Expression of Bax and Bcl-2 Proteins in Hippocampal CA1 Neurons Following Cerebral Ischemia-Reperfusion

Introduction: Cerebral ischemia-reperfusion causes complex pathological mechanisms that lead to tissue damage, such as neuronal apoptosis. Usnic acid is a secondary metabolite of lichen and has various biological properties including antioxidant and anti-inflammatory activities. This study aimed to investigate the neuroprotective effects of usnic acid on apoptotic cell death and apoptotic-relat...

متن کامل

Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells

The mechanisms of homing of endothelial progenitor cells (EPCs) to sites of ischemia are unclear. Here, we demonstrate that ex vivo-expanded EPCs as well as murine hematopoietic Sca-1+/Lin- progenitor cells express beta2-integrins, which mediate the adhesion of EPCs to endothelial cell monolayers and their chemokine-induced transendothelial migration in vitro. In a murine model of hind limb isc...

متن کامل

Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats

Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...

متن کامل

The Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia

One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014